Adenovirus-engineered human dendritic cell vaccine induces natural killer cell chemotaxis via CXCL8/IL-8 and CXCL10/IP-10 chemokines

> Lazar Vujanović, Ph.D. Research Instructor

P.I. Lisa H. Butterfield, Ph.D.

Presenter Disclosure Information

Lazar Vujanović, Ph.D.

The following relationships exist related to this presentation:

No Relationships to Disclose

Introduction

- Dendritic cells (**DC**) are the most potent antigen presenting cells capable of effective up-take, processing, and presentation of antigenic epitopes
- Natural killer (NK) cells are essential effector cells of the innate immunity that play an important role in antitumor and antimicrobial immune defense
- DC and NK cell cross-talk links innate and adaptive immunity, and plays a key role in host immune responses against in tious agents and tumors

• Utilize first generation (Δ E1 and Δ E3) recombinant adenoviral vectors (AdV) as vehicles for antigen engineering of DC-based tumor vaccines

• Monocyte-derived DC can be efficiently transduced with recombinant adenoviral vectors (Ad.DC) and are safe for clinical trials

• AdV infection induces an intermediate level of DC maturation (Vujanovic, L. et al. *Cancer Immunol Immunother*. 2009; 58: 121-133)

 DC transduced with AdV encoding for a tumor antigen stimulate antigenspecific CD4⁺ and CD8⁺ T cell responses

Introduction, Cont.

- Ad.DC effectively activate both CD56^{lo}CD16⁺ and CD56^{hi}CD16⁻ NK cell subsets
- Ad.DC induce NK cell activation as shown by increased expression of activation marker (CD69), proliferation, IFN-γ secretion, tumoricidal activity *in vitro*, and importantly strong antitumor activity *in vivo*
- Ad.DC-induced NK cell activation is mediated by cell-tocell contact
- Ad.DC and mDC-mediated NK cell activation is mediated by *trans*-presented IL-15 and transmembrane TNF

Vujanovic, L., et al. *Blood.* 2010. 116 (4): 575-583. Butterfield, LH et al. *J Immunother*. 2008. 31 (3): 294-309. Xu, J et al. *Blood*, 2007, 109 (8): 3333-3341.

- Can Ad.DC recruit NK cells in vitro and in vivo?
- Which chemokines Ad.DC produce?
- Which chemokine receptors NK cells express?
- Which chemokines produced by Ad.DC effectively induce NK cell recruitment?

In vitro Experimental set-up

Set-up 1.5 h migration assay

In vivo experimental set-up

Small animals optical imaging was performed using the IVIS optical imaging system at the time of injection (0h) and 24h post-injection

Enlarged image overlays of the best and average examples of NK cell migration towards Ad.DC and iDC

Chemotaxis was quantified by measuring the distance between a DC signal focus to the apex (**Top**), focus (**Center**), and bottom edge (**Bottom**) of an NK cell signal. The data were standardized by calculating the percent change in the determined distance.

Ad.DC have the ability to recruit NK cells in vivo

Ad.DC and mDC induce chemotaxis of both CD56^{lo}CD16⁺ and CD56^{hi}CD16⁻ NK cells

Ad.DC secrete a number of inflammation-associated chemokines

Chemokine receptors tested on circulating NK cells by FACS

Ligand	Receptor	CD56 ^{Io} CD16 ⁺	CD56 ^{hi} CD16 ⁻	CD56 ^{lo} CD16 ⁻
CCL2/MCP-1	CCR2	-	-	+
CCL5/RANTES	CCR3	-	-	++
CCL4/MIP-1β, CCL2, CCL5	CCR4	-	-	+
CCL3/MIP-1α, CCL4, CCL5	CCR5	-	-	+
CCL19/MIP-3β CCL21/6Ckine	CCR7	++	++	+++
CXCL8/IL-8	CXCR1	++	-	++
CXCL9/MIG, CXCL10/IP-10	CXCR3	+	+++	++

- 0-2% + 2-30% ++ 30-50% +++ >50%

Ad.DC secrete increased amounts of CXCL8/IL-8, CXCL10/IP-10 and CCL19/MIP-3β

* *p* < 0.05

Ad.DC recruit NK cells via CXCL8/IL-8 and CXCL10/IP-10

* *p* < 0.05

CXCL8/IL-8 selectively recruits CD56^{lo} while CXCL10/IP-10 recruits CD56^{hi} NK cell subsets

Conclusions

- Ad.DC effectively recruit NK cells *in vitro* and, more importantly, *in vivo*
- Ad.DC secrete a number of inflammation-associated chemokines
- Ad.DC mediate recruitment of NK cells by CXCL8/IL-8 and CXCL10/IP-10
- CXCL8/IL-8 selectively recruits CD56^{lo} while CXCL10/IP-10 selectively recruits CD56^{hi} NK cell subsets

Acknowledgements

Lisa H. Butterfield, Ph.D.

- Jian Shi, M.D.
- Angela D. Pardee, Ph.D.
- Hadas P. Naveh, Ph.D.

Nikola L. Vujanović, M.D., Ph.D.

• Andrea Šobo Vujanović

Stephen H. Thorne, Ph.D.

- Padmavathi Sampath, Ph.D.
- Rachel Sikorski

U. Pittsburgh Vector Core Facility

- Andrea Gambotto, M.D.
- Sheri L. Rea

The UPCI Immunologic Monitoring Laboratory
Cathy Brown
Jennifer L. Schnelbach
Sylvia E. Thomas-Shrader
Mary Jo Buffo
Sharon Sember

This study was kindly supported by:

- University of Pittsburgh Cancer Institute (UPCI) and the Henry L. Hillman Foundation (L.H.B. and N.L.V.)
- NIH 1P50CA121973 (L.H.B.)

- NIH RO1 DE17150 (N.L.V.)
- UPCI melanoma and skin cancer SPORE career development award (L.V.).